Navigation and Sailing

La Parguera, Puerto Rico

I grew up in Puerto Rico going to La Parguera every weekend, then I moved to the states and missed those beautiful waters every day I was away.

Sailing back into the waters of La Parguera was incredibly special! I was finally able to show Maddie, my wife, all the places I swam and explored as a kid. We even went to the bioluminescent bay, also called the bio bay, where Maddie went skinny dipping!

Which Sextant can you Trust?

GPS is a wonderful technology. It allows you to glance at your display and see exactly where you are! Chart plotters are even better, granting you the ability to see not only your coordinates, but your live position on a digital chart. Snaking your way through coral reefs at night becomes easy as driving down a country road, just follow the map and keep your digital representation on the map in the middle of your digital representation of a road and hope that there is no new debris in the way that you could bump into.

So we all agree relying too heavily on GPS is a bad thing and that it doesn’t replace proper seamanship and navigation?

If a nuclear bomb detonates in space at the start of World War III or if lightning strikes your mast (both equally probable events), the GPS as well as all your electronic navigational equipment will be toast! This is where backups come into play.

The most reliable and time tested backup is the classic sextant. You see them in movies where they try to make the captain look extra “shippy” by having him look out into the distance and say “Aye, we be nearin’ the coast”. The sextants they show in movies are in fact movie props, but they look like the bronze masterpieces created by expert craftsmen.

Sextant.jpg

For the price of a small boat, you can have a piece of navigational history! You will have an expensive antique that has stood the test of time and is incredibly heavy to hold while you try to sight the sun to find your position.

For that price, you could buy yourself a fancy Raymarine chartplotter and be able to snake your way through narrow waterways on the giant display screen!

What about those significantly less expensive plastic sextants? Are they any good? What are the problems with them? Why are they so much cheaper than the bronze models?

In 2020, we crossed the Atlantic from Cape Verde to Suriname (East to West crossing) using a plastic sextant as our guide. We turned off the GPS and primarily used noon sights to find our way across the ocean.

The plastic sextant did the trick! It accurately records the height of the sun in the sky and is easy to hold while you are doing a reading thanks to its lightweight plastic design.

As for concerns that the plastic sextants are “cheap”: They are a delicate measuring device that needs to be cared for. If you feel that a $2000 bronze sextant needs to live in its case, safely stowed inside the boat, why shouldn’t you do the same thing for your $300 plastic sextant?

We keep our sextant in a specially made box, safely stowed in the cabin away from strong sunlight. If I left it out on the deck, the heat from the sun could distort the arc of the sextant and ruin it; but why would you do that? Take care of your sextant and treat it as a priceless piece of equipment while you are sailing because regardless of the price, all sextants are irreplaceable out at sea.

Some people feel that you get what you pay for and if you paid more, it’s naturally better! Bronze is an expensive metal to make things out of compared to plastic, which is why the bronze units are so much more expensive! A solid gold sextant would be the most expensive option of all, but being made of gold would not make it any better than a bronze or plastic unit. The second part of the cost is the act of making the unit calibrated. Regardless of the material, calibrating the unit is an exacting task which takes money to do, and the result is a precise measuring device made out of different materials. The major cost difference is in the material that the measurements are produced on.

For a reliable backup to navigational electronics, we trust our plastic sextant! It does the job, is light weight, and won’t corrode in the marine environment. If it does die a watery or heat related death, it can also be replaced at an affordable rate compared to a more expensive unit.

Furling Vs. Hanks

Sails that are hanked onto the stay are a traditional system that has worked for centuries. The problem with it is the sail never really “goes away”. It’s up or down, nothing in between and when it’s down, it’s all piled up on the deck or boom.
Roller furling is the modern alternative where the sail wraps up around a tube that is positioned either over the stay or inside the spar. The sail can be furled or unfurled part way giving you unlimited variability in the sail size. When you want to put the sail away, it just wraps up and disappears. When you want the sail out, you just release it and never need to hoist the sail up against the force of gravity.
This all sounds very convenient, but what about when something goes wrong? With hank on sails, the sail goes up and down the spar or stay. If the halyard breaks, the sail will fall because of gravity. If the hanks get stuck, they will not slide and the sail will not want to move. Hanks on a stay are almost impossible to get stuck and if they do is because they have lost their shape and need to be replaced. They can be yanked hard to get them to break free and come down, but bronze on steel make for a slippery combination that almost never gets stuck. Hanks on a spar can get stuck, as the sail slides can resist movement on the mast track or get fouled up in the fasteners attaching the mast track to the spar. Different systems exist with differing prices and differing levels of headaches. The cheapest is an external metal mast track where metal slides hook on and secure the sail to the spar. This setup is inexpensive and very secure, but requires maintenance to keep it all moving smoothly. The sail will always go up but might struggle to come down if there is enough wind pressure on the sail. We use this setup on our boat for the storm trysail and it has proven itself reliable.
A more expensive option is a plastic track by Tides Marine where the sail slides are bronze or stainless steel. The setup is very slippery and the sail will always move up and down with ease. In storm force winds (over 45 knots in our experience) we were able to lower the mainsail just by pulling on the downhaul even though the boat was heeled over pretty far and the wind was technically “blowing the sail up” as the wind was blasting it from foot to head!
Some spars come with internal mast tracks where plastic slides fit into the key way on the aft edge of the spar. These work, and are the cheapest of all setups (because it comes with the mast) but it is also notorious for getting stuck on the way up and down. Many people who have this setup will switch to an external track to make life easier and sailing more enjoyable.
Furling systems offer the ease of working everything from the comfort of the cockpit as all the control lines are led aft. This means you can easily steer and work the sails without getting up!
While it might sound convenient, you must also think about “what if” scenarios. More parts means more failure points. It’s not just a halyard and some hanks keeping your sail up and set, you have an entire machine to worry about!

While on a passage with a friend, the mizzen sail got stuck upon deployment. The sail started to come out but then stopped! The skipper had to go on deck and yank the sail out of the slot in the spar where the sail was pinched. The sail was new, so it wasn’t a shape issue, instead it was as simple as the sail not being fueled up tight enough the last time it was put away so the furled sail was pinching on the walls of the spar until it got stuck. The sail would not come out but worse yet, would not go back in! In a storm when you need to reduce sail, having a sail stuck part way is a horrible fate!
On that same sail, the Code 0 sail on its continuous furler gave some serious troubles. The sail simply did not want to fuel in as the winds started to build. Wrestling a Code 0 in winds over 20 knots is an impossible task for 3 able crew as we struggled for some time to get it to yield to our commands!

What happened was the sail had so much pressure that it pressed against the furled Genoa. When we finally got it to start to furl, the Code 0 sucked the Genoa sheets in with it, so we needed to unfurl it and free the sheets; but the wind was stronger and everything was stuck! We eased the halyard to get the luff to pull away from the Genoa, which worked but then the furling line kept falling off of the continuous furler. With the luff tight, it pressed too hard on the Genoa, luff loose it could not furl either. The winds continued to build so we deployed the mainsail and set upon a broad reach to try and blanket the Code 0 to reduce the pressure on it, but this had us sailing straight for a lee shore at 8-9 knots! The Code 0 was so big and effective that the dirty wind from the mainsail was still too much pressure for the furler to operate, so we decided to take it down open like an old time sail. This was a huge mistake!
As we eased the halyard and sheet to bring it onto the deck, the sail became even more powerful as the luff billowed and the sail filled. The power in the sail was tremendous as we rocketed towards shore even faster. We couldn’t turn into the wind because the sail could foul on the rig and make matters even worse so we continued to try with no avail.
The sail began to flog and yank on the yacht as it pulled us towards our destiny with terrible fright! We decided to try again the original way and got the Genoa sheets clear, tightened the halyard, and installed the furling line. This time, the sail furled in with reluctance and we were able to veer off from our course towards land.
It was a frightful experience that thankfully caused no loss to the sail, yacht, or crew. The skipper claimed that if he were alone, he would have needed to release the sail into the sea because it would have been impossible to recover alone on the boat. The Code 0 is of similar shape to our Drifter, but our Drifter is hanked onto a stay, so releasing the halyard brings the sail down without allowing the luff to billow out. The further it comes down, the less power it has. On the Code 0, this proved the opposite, as it came down, it increased in power! Free flying sails are a lot to handle (ask anyone with a spinnaker which sail is easier to bring down: spinnaker or jib) and adding a furler means that when anything fails, the sail becomes a powerful free flying sail!
Sadly, this was not an isolated experience, for the next day in very light wind, we set the Code 0 again, and took it down long before the winds built up like last time. As it furled, the torsion rope got stuck and stopped furling as the electric winch continued to pull on the furling line. When we eased the furling line to fix the furler, the torsion rope spun straight and wrapped both furling lines tightly around it and completely obscuring the furler. Now we had no access to work on the furler! We managed to reach the winch with the continuous loop and put the whole thing on the winch to force the furling line off the torsion rope, then under tension, fix the furler, then continue furling it back in. What if the winds built faster than we could work? What if a squall came up? What if the skipper was alone and didn’t have us or anyone else to help?

While furlers are very convenient, the problems they can bring far outweigh the inconvenience of raising a sail in my opinion.